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Abstract

Limit-cycle oscillations (LCOs) of a nonlinear panel in supersonic flow are computed using a reduced-order

aeroelastic model. Panel dynamics are governed by the large-deflection, nonlinear, von Kármán equation as expressed

in low-order form through a Galerkin approximation. The aerodynamics are described by the Euler equations, which

are reduced in order using proper orthogonal decomposition. The coupled system of equations is implicitly time

integrated with second-order temporal accuracy to predict LCO amplitude, and linearly analyzed to predict LCO onset.

The fluid is synchronized with the structure in time through subiteration, using only 18 dof to describe the aeroelastic

system. The Jacobian employed in the fully implicit analysis is of equivalently low rank, enabling rapid analysis. Using

the reduced-order model, LCO onset is predicted directly at a computational cost of approximately 400 time steps with

a high accuracy verified by full-order analysis.

Published by Elsevier Ltd.

1. Introduction

Over the last several years, Karhunen–Loève (K–L) analysis, or proper orthogonal decomposition (POD), has been

used to accelerate greatly the time integration of aeroelastic configurations by reducing system order (Romanowski,

1996; Hall et al., 2000; Thomas et al., 2001). While the application of POD to aeroelastic systems has been primarily

limited to linearized aerodynamic analysis, these studies show the tremendous potential of POD-based reduced-order

models (ROMs) for the economical stability analysis of aeroelastic configurations. POD-based ROMs have also been

applied in different forms to problems in many disciplines. Noteworthy achievements with POD-based ROMs include:

the development of control models for unsteady flow (Park and Lee, 1998; Rediniotis et al., 1999), airfoil shape

optimization (LeGresley and Alonso, 2000, 2001), Euler analysis of unsteady flows driven by structural vibration (Pettit

and Beran, 2000), and the study of nonlinear oscillations in flexible panels (Mortara and Beran, 2000). A review of

relevant work is given by Beran and Silva, 2001.

The determination of aeroelastic behavior in the transonic regime is an especially demanding problem owing

to the capture of essential nonlinearities in the aerodynamics. System nonlinearities, which may include structural

nonlinearities, also play a key role in the aeroelastic phenomenon of limit-cycle oscillation (LCO) (Dobbs et al., 1985;
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Cunningham, 1998; Gordnier and Melville, 1998; Beran et al., 1999). To capture properly the effects of aerodynamic

nonlinearities on aeroelastic behavior, time-integration methods based on the transonic small-disturbance, Euler and

Navier–Stokes equations have been developed. These methods can provide accurate approximations of system

behavior, but generally require very large computation times owing to the time-accurate nature of the calculations and

the large integration times required to establish flow stability properties. Direct methods formulated from Hopf

bifurcation theory have been developed to compute flutter and LCO onset speeds of aeroelastic systems without time

integration [Beran and Morton (1997); Beran (1998); Morton and Beran (1999); Beran (1999)], but become

computationally expensive when system order becomes large.

Recent work has been carried out to apply POD to the Euler equations in an effort to capture aerodynamic

nonlinearities in a reduced-order aeroelastic model. A low-order POD representation of the discrete, two-dimensional

Euler equations [Pettit and Beran (2000)] was coupled with the von Kármán equation to simulate the dynamics of flow

over a flexible panel [Beran and Pettit (2001)]. For supersonic flows that were essentially linear (Mach 1.2), LCOs were

accurately computed with the POD model using time steps of moderate size. Following this success, a new approach

was taken, involving domain decomposition, that allowed LCO to be accurately simulated in the transonic regime

(Lucia et al., 2002). In that study, full-order and ROMs of a small flow region containing a moving shock were

decomposed from the larger flow domain. Both approaches enabled a physically consistent treatment of the

aerodynamic nonlinearity.

Like the previous work (Beran and Pettit, 2001), a single-domain approach is pursued in this investigation for flow

conditions that are dominantly linear. However, the methodology is substantially altered to improve the temporal

coupling between the aerodynamic and structural dynamic equations, thereby greatly increasing the allowable time step

and decreasing the computational effort necessary to achieve LCO. Furthermore, a modal representation of the

structure is employed, which permits a more efficient formulation of the reduced order aeroelastic system, further

increasing computational efficiency. The modal representation also permits judicious application of structural damping

to temper the spurious behavior of some eigenvalues of the low-order aeroelastic system that apparently arises from the

form of data sampling used to construct the ROM. With very small amounts of damping, a direct method is used to

predict the onset of LCO at a Hopf bifurcation point at least two orders of magnitude faster than with the full order

model.

2. Formulation

We first summarize the governing equations for the structure and fluid, including boundary and initial conditions.

The process by which these equations are discretized and then numerically integrated is described. The combined set of

discrete equations will be referred to as the ‘‘full’’ system. Next described is the procedure by which the aerodynamic

equations are projected onto a sub-space defined by the POD and then coupled to the structural dynamics equations.

Attention will also be given to the computation of bifurcation points of the reduced-order aeroelastic system and the

discretization of the physical domain.

2.1. Structural dynamics equations

Two-dimensional flow over a semi-infinite, pinned panel of length L is considered. Panel dynamics are computed with

von Kármán’s large-deflection plate equation, which is placed in nondimensional form using aerodynamic scales L and

freestream velocity, uN (Selvam and Morton, 1998) (0oxo1)
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where h is the panel thickness, r
N
is the freestream density, p is the pressure, scaled by r

N
u2
N
; g is the ratio of specific

heats (1.4), MN is the freestream Mach number, n is Poisson’s ratio (0.3), m is the mass ratio r
N

L=rsh; rs is the

structural density, l is a dynamic pressure parameter (r
N

u2
N

L3=D), D is the plate stiffness (Esh
3=12ð1� n2Þ), and Es is

Young’s modulus.

The nonlinear, in-plane load, (2), serves to limit panel deflections wðx; tÞ induced by fluid–structure interaction. Here,
the load is assumed to be distributed uniformally over the panel, as originally specified by Dowell (1966). Eq. (1) is

comparable to the form Dowell studied, although the dimensional panel thickness, wd ; and dimensional time, td ; are
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scaled by h and ðrshL4Þ1=2; respectively. Two pinned boundary conditions are enforced at the panel’s endpoints: w ¼ 0

and @2w=@x2 ¼ 0:
A modal solution for the deflection wðx; tÞ is assumed

wðx; tÞ ¼
XIm

i¼1

aiðtÞsinðipxÞ; ð3Þ

where Im is the number of structural modes retained, and the modal amplitudes ai vary in time and are collocated in the

array a: In the manner pursued by Dowell, 1966, the Galerkin method is used to obtain a low-order set of ordinary-
differential equations describing the behavior of ai: First, (3) is substituted into (1). The resulting expression is then

integrated, following pre-multiplication by sinðipxÞ; to yield (i ¼ 1;y; Im)
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The projected pressure components, Pi; are integrated from the aerodynamic solution with the midpoint rule, using

flowfield pressures obtained at grid points on the panel surface. The aerodynamic equations, their discretization, and

their solution are discussed in later sections. The form of (4) is equivalent to that arrived at by Dowell, although two

differences should be noted. First, the different form of scaling described above alters equation coefficients, and,

second, an expression relating p to the state of the panel is not assumed.

The structural dynamics equation (4) is placed in first-order form by introducing a mode speed array, b; such that
’ai ¼ bi;

’bi ¼ �
mðipÞ4

l
þ
6m
l
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h
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" #
ai þ 2mPi � zibi; ð6Þ

where zi is a coefficient for damping of the ith structural mode. Structural damping is used in the reduced order analysis,

as will be described. The mode speeds and amplitudes are collocated into a structural solution array over all nodes,

Ys ¼ ½b; a�T; leading to a general form of the structural equation

’Ys ¼ RsðYs;P; m; l; h=LÞ: ð7Þ

2.2. Fluid equations and boundary conditions

The flow above the pinned panel is modelled with the Euler equations, cast in nondimensional form for a general

curvilinear coordinate system, (x; Z). The panel is assumed to lie in a flat plane, extending towards x ¼ 7N; with the y-

coordinate extending normal to the plane and the x and Z; coordinates aligned with the x and y; coordinates. The fluid
equations are expressed as

@Û

@t
þ
@ÊðUÞ
@x

þ
@F̂ðUÞ
@Z

¼ 0; ð8Þ

where Û � U=ðxxZy � xyZxÞ; U is the array of conserved variables, and Ê and F̂ are appropriate flux arrays. The

aerodynamic equations are discretized in space to second-order accuracy with an upwind total variation diminishing

(TVD) scheme previously applied to unsteady aerodynamic and aeroelastic problems (Pettit and Beran, 2000; Beran

and Morton, 1997). Following discretization, the aerodynamic equations take the form

’Yf ¼ Rf ðYf ;Ys;MNÞ; ð9Þ

where Rf is a collocation of the discrete fluid equations, and Yf is the fluid-state array.

To simplify the construction of the ROM of the fluid, a transpiration boundary condition is applied at y ¼ 0 to model

the effects of a moving boundary without grid deformation (Sankar et al., 1986; Pettit and Beran, 2000). This transfer of

boundary conditions is identical to that employed in small-disturbance theory, and assumes the regularity of the

computed solution and the smallness of the deformation: wðxÞ51: Such small deformations are consistent with the

deflections associated with panel response, especially near critical points of LCO onset. We also compare the panel-

response solutions obtained in this study to those previously reported by Gordnier and Visbal, 2000 who used a
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geometrically exact boundary condition at the panel surface. Along the three remaining boundaries of the

computational domain, freestream conditions are specified.

2.3. Time integration of the coupled full-order equations

The systems of discretized fluid dynamic equations and modal structural equations are combined into a single time-

dependent system representative of the complete interaction between structure and inviscid flow

’Y ¼ RðY ;MN; m; l; h=LÞ; ð10Þ

where Y � ½Yf ;Ys�T and R � ½Rf ;Rs�T:We will refer to (10) as the ‘‘full-order’’ system, in that all aerodynamic dof are

retained. A reduced-order system is derived below for which only significant dof are retained.

Following Beran (2001), time integration of (10) proceeds in two steps, assuming an OðDtÞ lag in the synchronization
of fluid and structure, where Dt is the time step. First, the structural variables are updated from time level n to n þ 1

using a Crank–Nicolson procedure to be described below (but limited here to only structural variables). During this

step, the pressures known at grid points on the panel surface are considered frozen. In the second step, the aerodynamic

variables are explicitly updated, Y nþ1
f ¼ Y n

f þ DtR
n
f ; using only structural variables defined at time level n:

2.4. Grid generation and time step

The flow is simulated over a physical domain of length DL; centered about x ¼ 0; and height DH : The domain is

discretized using I nodes in the streamwise direction and J nodes normal to the panel. Indices i (1pipI) and j (1pjpJ)

are used to denote grid points at which variables are evaluated. Grid points are clustered in the direction normal to the

panel at the panel surface, with minimum spacing denoted by Dwall: The spacing of grid points is specified to grow

geometrically with j from the panel boundary. In the streamwise direction, the node spacing is chosen to be uniform

over the deforming panel segment (coincident with the structural grid), while growing geometrically upstream of the

leading edge (positioned at i ¼ ILE) and downstream of the trailing edge (positioned at i ¼ ITE). Calculations are

carried out with a baseline grid given by the following: I ¼ 141; J ¼ 116; DL ¼ 50; DH ¼ 25; ILE ¼ 45; ITE ¼ 97; and
Dwall ¼ 0:0125:
The full-order equations are time integrated with a time step of 0.005. A previous investigation (Beran and Pettit,

2001) found that the computed solutions of the coupled full-order equations were not sensitive to changes in the values

of the grid parameters and the time step for the range of problems studied in this investigation.

2.5. POD

POD is a linear method for establishing an optimal basis, or modal decomposition, of an ensemble of continuous or

discrete functions. Detailed derivations of the POD and its properties are available elsewhere (Holmes et al., 1996;

Newman, 1996) and not repeated herein. In our discussion of POD, M basis vectors are used to represent deviations of

X ðtÞ; an N-dimensional vector, from a base solution, X0: These are written as fe1; e2;y; eMg; and are referred to here as
‘‘modes.’’ The modes are orthonormal

eiTej ¼
1 if i ¼ j;

0 otherwise

�
ð11Þ

and computed in a manner to be described shortly. The modal decomposition of X ðtÞ using M modes is given by

X ðtÞEX0 þ
XM
i¼1

X̂ie
i ¼ X0 þ FX̂ðtÞ; ð12Þ

where F is an N � M matrix containing the ordered set of modes, F ¼ ½e1; e2;y; eM � and X̂ is an M-dimensional vector

of modal amplitudes, X̂ ¼ ½X̂1; X̂2;y; X̂M �: For the method to be advantageous, M5N is required.

The POD modes are constructed, or trained, by first computing samples, or snapshots, of system behavior (solutions

at different instants in time for dynamic problems, or equilibrium solutions at different parameter values for static

problems) and storing these samples in a snapshot matrix,S: For now, we assume that M samples of solution deviation

from the base state, X0; are collected and column-wise collocated into the N � M snapshot matrix: S ¼
X1 � X0;X2 � X0;y;XM � X0½ �: The well-known K–L POD basis minimizes the error in approximating a member

of this class with fewer than M basis vectors. This property of optimal convergence associated with the K–L basis is

established in many works (Holmes et al., 1996; Newman, 1996; Hall et al., 2000). The K–L basis can be readily

computed by relating a mode matrix F to the snapshot matrix through a transformation matrix V ; F ¼ SV ; that
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maximizes the projection of the snapshot matrix onto the POD basis. This leads to the eigenproblem

STSV ¼ VL ð13Þ

for eigenvectors V and eigenvalues L: The eigenvalues are nonnegative, since STS is symmetric and positive semi-

definite. Provided that the eigenvectors V are scaled to be orthonormal, VTV ¼ I (I is the identity matrix), the

transformation formula F ¼ SV yields FTF ¼ L: Multiplying each ei by
ffiffiffiffiffi
Li

p
yields an orthonormal set of modes,

FTF ¼ I ; as originally specified. The K–L basis for a subspace of dimension MroM is obtained by retaining the modes

associated with the Mr largest eigenvalues computed in (13). These retained modes are placed in the array Fr; such that
Fr ¼ SVr:

2.6. POD applied to the fluid equations

The ROM of the full fluid system is obtained by substituting Yf ¼ Y0 þ FrŶf into (9) and projecting the result onto

the K–L basis, a process we call subspace projection. The reduced-order system takes the first-order form (where Y0

represents uniform flow)

Ŷf ¼ FT
r Rf ðY0 þ FrŶf ;Ys;MNÞ � R̂f : ð14Þ

In the POD analysis described above, the full-system state vector is assembled with the set of modes Fr: For systems
with multiple dof per grid point, we have experienced algorithmic difficulties when linking field variables within

individual modes. Instead, we represent each field variable separately by a set of modes. The process of computing

modes and POD eigenvalues for equation sets with arbitrary numbers of variables is generalized by expanding the

snapshot data into a larger matrix #S; where each column is filled with sampled data only over a variable’s index range.
In this form, #ST #S is a diagonal matrix of blocks, each of which is analyzed for POD eigenvectors and eigenvalues. For

the Euler equations, computed modes may be associated with density or total energy, for example. Currently, we use the

magnitude of POD eigenvalues to restrict the number of retained modes, regardless of the association between field

variables and retained modes.

2.7. ROM construction and equation coupling

Application of a POD-based ROM to aeroelastic analysis involves two steps. First, the ROM is constructed using

samples of full-system behavior taken for a set of input parameter values that are representative of relevant cases. These

samples are computed by time-integration of the full-system equations, as described above, and then applied to the

calculation of Fr: Details concerning the generation of samples is reserved for the Results section, including number of
samples, duration of sampled behavior, and number of retained modes.

Later in this paper, we examine the application of ROMs to aeroelastic analysis at values of l in the neighborhood of
that used in the sampling process. We assess the l-range of validity of these models in terms of ability to predict time-
accurate estimates of Y ðtÞ and examine the extent to which time steps in the ROM analysis can exceed those limited by

numerical stability in the full-system analysis.

The systems of reduced-order aerodynamic equations and modal structural equations are now combined into a low-

order, aeroelastic system for the POD and structural modes

�Ŷ ¼ R̂ðŶ;MN;m; l; h=LÞ; ð15Þ

Ŷ � ½Ŷf ;Ys�T; R̂ � ½R̂f ;Rs�T:

2.8. Bifurcation analysis

With reduced-order modelling, critical parameter values at which the panel loses stability to time-periodic

disturbances can be directly determined. This approach has been studied previously for a simple, nonlinear system

involving convection, diffusion and reaction that exhibits Hopf bifurcation (Beran et al., 1999). Stability exchange in

the form of a Hopf bifurcation occurs when a complex pair of eigenvalues of the Jacobian of the reduced-order

aeroelastic system, Ĵ; has a vanishing real part, while other real components of the eigenvalues of Ĵ are negative. The

reduced-order Jacobian is computed numerically with central-difference approximations from the form
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Ĵ ¼

@R̂f
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@R̂f
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@Rs
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@Rs

@Ys

2
6664

3
7775 ð16Þ

and is of a small rank equal to the number of retained fluid modes and structural dof. Choosing l as a parameter to be
varied, we define b such that bðlÞ is the real part of the eigenvalue of ĴðlÞ with largest real part. A two-step procedure is

conducted to search for points of stability exchange satisfying b ¼ 0: First, a coarse sweep in l is carried out, starting
from a known, stable condition, and increasing l until a positive value of b is computed. At each point in the sweep, a
new Jacobian is numerically constructed from the reduced-order system. When a change in stability is detected, an

iterative process of bi-section is followed, including Ĵ updates, that rapidly establishes the location of the bifurcation

point to 5 significant digits in l:

2.9. Time integration of the aeroelastic system

The aeroelastic system Ŷ ¼ R̂ is integrated in time with the two-time level, second-order accurate, Crank–Nicolson

method:

Ŷnþ1 � Ŷn

Dt

¼
1

2
ðR̂nþ1 þ R̂nÞ; ð17Þ

R � Ŷnþ1 �
Dt

2
R̂nþ1 � Ŷn �

Dt

2
R̂n ¼ 0: ð18Þ

At each time level, Y � Ŷnþ1 is computed from (18) using a chord technique with a time-frozen Jacobian

I �
Dt

2
Ĵo

� �
ðYkþ1 �YkÞ ¼ �RðYkÞ; ð19Þ

where k is a subiteration index and Ĵo is the Jacobian of the reduced order aeroelastic system, evaluated for a condition

of uniform flow and Ys ¼ 0: A suitable number of subiterations are computed at each time step to obtain a good

approximation to Ŷnþ1; typically, one to two subiterations are generally sufficient to drive R to near machine zero. We

observe that for the cases examined herein, peak panel deflection is no more than 2% of panel length, thus allowing the

chord method to be rapidly convergent. Prior to subiteration, Y is predicted from the explicit formula

Y ¼ Ŷn þ DtR̂
n: ð20Þ

Owing to the low order of the implicit system, the computational effort required to obtain Y is dominated by the

expense of evaluating R:
The initial condition is that of uniform flow about an un-deflected panel with a perturbation to the first mode:

asð1Þ ¼ dpert: Generally, dpert ¼ 0:0001 is specified.

3. Results

Steady state and dynamic aeroelastic states are computed for the aeroelastic configuration described above.

Freestream Mach number, MN; and the dynamic pressure parameter, l; are treated as free parameters, while m; n; and
h=L; are specified to be 0.1, 0.3, and 0.002, respectively. This set of parameter values is selected to facilitate comparison
with previous analysis, as will be described shortly. Using full-order analysis, results are computed at Mach 0.9 and 1.2,

where steady state and LCO behavior is observed, respectively. Reduced order modelling is applied to the numerical

prediction of the pitchfork bifurcation of steady state solutions at Mach 0.9 and the Hopf bifurcation of LCO solutions

at Mach 1.2. Also, at Mach 1.2, LCO states of the reduced-order aeroelastic system are computed and compared to

those found with the more computationally expensive full-order analysis.

3.1. Full-order analysis

Prior to discussion of results obtained with the reduced-order aeroelastic model, we present static and dynamic

aeroelastic solutions of the full-order equations and assess their sensitivity to the number of structural modes. Solutions

are compared to those reported by Gordnier and Visbal, 2000 for a variety of Mach numbers and dynamic pressures.
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Steady solutions are compared for Mach 0.9 and LCO solutions are compared for Mach 1.2. In all cases, agreement

with published data is very good, providing confidence in the full-order model that has been constructed for this work.

At Mach 0.9, two branches of steady solutions bifurcate symmetrically from the trivial solution of a flat panel at a

critical value of l: At values of l above critical, the trivial solution is unstable, and the selection of steady state solutions
is determined from initial conditions. Computed results are shown in Fig. 1 in terms of thickness-normalized panel

deflection at the mid-chord panel position (x ¼ 0) where deflection is observed to be largest in magnitude. Data is

reported for the case of 4 structural modes. Solutions are not found to be sensitive to Im;mid-chord deflections (wd=h on

top branch) of 1.3211 (Im ¼ 4), 1.3210 (Im ¼ 3), and 1.2977 (Im ¼ 2) are computed. Also shown in Fig. 1 are data points

reported by Gordnier and Visbal, 2000 and Beran and Pettit, 2001, which compare well to the current results. A

solution point on the trivial branch at l ¼ 18 is observed to be lightly stable, bracketing the value of l at which stability
is lost between 18 and 18.5.

At Mach 1.2, a simpler solution structure exists, consistent with the findings of other investigators Gordnier and

Visbal, 2000; Dowell, 1967. For this Mach number, the trivial branch of panel solutions is observed to lose stability to a

branch of LCO solutions at a value of l between 17 and 18.5. The Hopf bifurcation is supercritical, and computed data
for 4 structural modes are compared to that previously reported in Fig. 2. Agreement is good for prediction of LCO

amplitude, LCO onset pressure, and LCO frequency, although here, only comparisons of LCO amplitude and onset are

reported. Agreement with the results of Gordnier and Visbal, 2000 are slightly improved with the current procedure

over that reported by Beran and Pettit, 2001. LCO amplitude is insensitive to the number of modes used in the

structural analysis. For the highly dynamic case corresponding to l ¼ 100; 3
4
-chord deflections (wd=h) of 1.5948

(Im ¼ 4), 1.5918 (Im ¼ 3), and 1.6333 (Im ¼ 2) are computed. As solutions for both Mach 0.9 and 1.2 are found to be

converged with respect to the number of structural modes when Im ¼ 4; this value is assumed in all results reported

below.

3.2. Reduced order analysis

Results obtained with reduced-order representations of the aeroelastic system are now presented for Mach 0.9 and

1.2. First, at Mach 0.9, a ROM is constructed to directly predict the critical value of l at which the panel loses stability
to nontrivial, steady deflections. This procedure is repeated for Mach 1.2 following construction of a second ROM, but

in this case, the new ROM is also used in the calculation of LCOs at selected dynamic pressures.

At Mach 0.9, a 10-mode ROM is constructed using 4 steady solutions, computed for l ¼ 20 and 30 on the inward-

and outward-deflected solution branches. A search procedure, like that described above in the Bifurcation Analysis
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section, is carried out to compute the crossover point (b= 0). In this case of steady state analysis, attention is restricted

to eigenvalues with only real parts. The search procedure is very fast, requiring about 2 CPU minutes on a 1:13 Ghz
laptop computer and 10–15 iterations, depending on initial guess and jump size. In comparison, computation of a single

steady state solution requires about 2 CPU hours on the same class of computer.

When the 10 most significant modes of the ROM are retained, the location of the bifurcation point is computed to be

l ¼ 15:28: This value is lower than that found with the full-order analysis, which brackets the bifurcation point between
l ¼ 18 and 18.5. See Fig. 3. Direct prediction of the bifurcation point, while precise for a specified number of POD

modes, is found to be somewhat sensitive to the number of retained modes, Mr: For a moderate number of retained
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modes, a trend of decreasing dynamic pressure at the critical point with increasing Mr is established: 17.16 (Mr ¼ 8),

16.74 (Mr ¼ 9), 15.28 (Mr ¼ 10), and 15.05 (Mr ¼ 11). When 12 or more modes are retained (up to 16 maximum), the

modes appear to lose linear independence, and the results become unreliable. With less than 8 modes, there appears to

be too little information representing the system. This last observation is consistent with an expected number of

minimum states, which would be the product of the number of physical variables (4) and the number of behaviors to

represent (2, i.e., upward and downward deflection of the panel). Thus, for the ROM constructed, the bifurcation point

can be considered to lie between about 15 and 17, depending on Mr: Additional attention should be given to the

methodology to attempt to reduce this level of uncertainty and to improve the level of agreement with the full-order

model.

The reader should note that the current procedure for computing the bifurcation point is about 4 times more efficient

than that employed by Beran and Pettit, 2001, owing to the significant reduction in computer time needed to evaluate

@R̂=@Ys in the modal form of the structure in comparison to the previous finite-difference approach.

Solutions exhibiting accurate LCO behavior are obtained with a POD-based ROM constructed for Mach 1.2 and

l ¼ 25: This same ROM is used in the direct determination of the critical value of l at which the panel first loses

stability. A 10-mode ROM is constructed from 40 full-system samples, collected at a uniform rate during the first 20

time units of a computation that requires about 300–400 time units to establish LCO. With this number of modes,

about 98% of the energy represented by the sampled data is retained. The ROM is found to predict LCO frequency and

amplitude with reasonable accuracy up to about l ¼ 40: For reasons to be discussed below, a small level of structural
damping is assumed in the second mode: z2 ¼ 0:01: The location of the Hopf bifurcation is computed to be at l ¼ 17:61;
which is consistent with full-order analysis, which brackets the bifurcation point between l ¼ 17 and 18.5. At the

bifurcation point, the imaginary component of the critical, complex pair is 0.683 radians per time unit, corresponding to

a period of 9.20 for the neutral mode. (The reader should note that fully developed LCOs at and below l ¼ 18:5 are not
computed with full-order analysis owing to the very large computational times necessary to capture these lightly

damped solutions.)

LCO solutions are shown in Fig. 4 for ROM solutions computed with Dt ¼ 0:05; a time step 10 times larger than that
permitted (i.e., by stability) for integration of the full-order system. One subiteration is performed at each step of the

time-integration process; additional subiterations have negligible impact on the computed solution. In general, ROM

solutions are in excellent agreement with the full-order results for l less than about 40. In comparison to the ROM

solutions presented by Beran and Pettit, 2001, which are not shown in Fig. 4 to maintain figure clarity, the new implicit

time-integration methodology allows larger time steps while not degrading accuracy. For the cases examined herein,

application of reduced-order modelling is not found to diminish LCO amplitude. The ROM is found to be inaccurate
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when DtX 0.1. For these large time steps the natural response of the second structural mode does not appear to be

properly resolved, thereby permitting the sustainment of a high-frequency error (approximately 10% of the base LCO

amplitude).

Time histories of deflections predicted with the 10-mode ROM (constructed for l ¼ 25) compare reasonably well

with those obtained using full-order analysis. Results are presented in Fig. 5 for a subcritical case, l ¼ 10; and in Fig. 6
for a supercritical case, l ¼ 25; the value of l at which the ROM was constructed. In the supercritical case, LCO

amplitude and frequency are in excellent agreement, although at large times, there is a slight accumulated phase shift

error. When l is decreased to 10, the aeroelastic system is stable, as predicted by both full-order and reduced order

analysis. However, the ROM solution has a lower level of damping than desired.
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Full-order and reduced-order solutions are also compared using phase portraits of panel deflection and panel speed

(dw=dt) in Fig. 7. In this figure, the fidelity of the ROM with time step of 0.05 (placing about 180 time steps in each

cycle) is evident. Sensitivity of the reduced-order solution to time step is confirmed by comparing the peak deflection

(3=4 chord) for Dt ¼ 0:05 (0.3405) to that of Dt ¼ 0:025 (0.3373).
The aeroelastic system is analyzed with much greater computational efficiency using the ROM. The full-order system

is analyzed in about 2 CPU hours (a simulation of 400 time units), while the reduced-order system is time-integrated in

about one-quarter of the time. The location of the Hopf bifurcation point is predicted even more efficiently, in about 2

CPU minutes. The cost of constructing the ROM is relatively small, approximately one-twentieth that of the complete

full-order simulation. Once the ROM is constructed, it can be applied over a fairly wide range of dynamic pressures

without change.

The reduced- and full-order models for l ¼ 25 are also compared using the amplitudes of the structural modes. As

phase portraits during LCO, the computed amplitudes of modes 1 and 2 are compared in Fig. 8, while modes 3 and 4

are shown in Fig. 9. The reader should note that the amplitudes are associated with the deflection as scaled by panel

length, and not panel thickness (0.002), leading to the rather small amplitude values reported. The chosen form of

presentation highlights differences in modal behaviors; for example, as seen in Fig. 9, the mode 2 response predicted

with the ROM is of somewhat greater amplitude. However, the phase relationship between mode 1 and 2 is well

preserved, and, since the mode 2 response is small relative to that of mode 1, differences in mode 2 amplitude have little

impact on the overall panel response. The amplitudes of modes 3 and 4 are even smaller, possibly weakening their

influence during ROM construction, but the general characteristics of the ROM modal responses correspond well to

those of the full-order system.

Frequency of LCO response varies in a complicated manner with respect to dynamic pressure, as predicted by the

full-order model and the 10-mode ROM trained at l ¼ 25: The excellent agreement between the two models is shown in
Fig. 10 over a range of values of l from 10 to 40. Also shown in this figure is the frequency associated with the Hopf

bifurcation at l ¼ 17:61 predicted by the ROM and an inset figure that magnifies the region of interest around the

bifurcation point. Not surprisingly, the reduced order yields an LCO frequency nearly identical to that of the full-order

model at l ¼ 25:However, the agreement remains good for values of l at or above 17.5 (within approximately 2%), and

a local minimum in frequency near l ¼ 18:5 is predicted by both approaches. This figure also shows that the frequency
predicted by the direct procedure is reasonably consistent with data obtained with time integration of the ROM. Small

differences between time integration and direct analysis of the ROM may be attributable to the large time steps

employed and small errors in the computation of frequencies from the time-series data.

The ROM calculations described above are carried out using a small amount of damping in the second mode:

z2 ¼ 0:01 (all other damping coefficients set to 0). The purpose of this added damping is to stabilize an unstable,
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complex pair of eigenvalues of the reduced-order aeroelastic system (Ĵ) associated with the second structural mode. The

effect of the added damping is demonstrated in Fig. 11, where it is seen that a complex pair in the right-hand plane is

moved to the left-hand plane with negligible impact on neighboring eigenvalues. This pair has a frequency of about 3

radians per time unit, which is near the natural frequency of the second mode, 2.50 radians per time unit (the natural

frequencies of modes 1, 3, and 4, are 0.624, 5.62, and 9.99 radians per time unit, respectively). Examination of the

eigenvector corresponding to the unstable pair also establishes the connection between this pair and the second

structural mode. The reader should note that the eigenvalue spectra appearing in Fig. 11 are computed at l ¼ 17:61;
where the physical bifurcation, primarily involving the first structural mode, occurs.

In contrast, the Hopf bifurcation involving the second structural mode, which the undamped ROM predicts at a

value of l below 17.61, is not physical. Fortunately, the small amount of damping specified removes the undesirable
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behavior, with little effect on the other modes. However, as l is increased, this troublesome pair again becomes

unstable, and by l ¼ 40 pollutes the LCO to a degree which cannot be controlled by damping. Such behavior is entirely

absent from the response of the full-order model. The authors do not have a complete explanation for how the second

structural mode becomes of increased importance in the ROM, but find interesting clues in the data samples used in the

construction of the ROM. Time histories of the structural modes are shown in Fig. 12 over the period of time in which

data samples are collected. The initial conditions of a1ð0Þ ¼ 0:0001 and aið0Þ ¼ 0 ðia1Þ are found to be satisfied. Upon
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release of the panel, modes 2–4 respond in two ways. First, there is are base responses at the response frequency of

mode 1. With time, these responses continue to develop until LCO is achieved. Second, there are more rapid responses

at about the natural frequencies of the higher modes. In mode 2, the natural response is observed to damp slowly over

the training period and to be of relatively large amplitude. We speculate that over the short time interval 0ptp20; the
perturbations arising from the response of mode 2 in its natural frequency lead to a misidentification of mode 2

behavior in the ROM. Given the results presented above, mode 2 in the ROM appears to be under-damped, perhaps a

result of the transient, natural response in mode 2 over-emphasized in the computed POD mode set. The issue of

whether this problem can be corrected through an improved training process involving different modal initial

conditions, better selection of data snapshots, or judicious application of structural damping, should be addressed in

future research.

4. Summary and conclusions

Two aeroelastic models for simulating the interaction between an inviscid flow and a nonlinear panel were developed:

a full-order model and a ROM. The full-order model was obtained from a coupling of the discrete Euler equations

(fluid) and the discrete von Kármán equation (structure), and contained over 65,000 dof. Solutions of the full-order

model for Mach 0.9 and 1.2 provided results that compared well-published results. Full-order solutions were typically

computed in about 3 h on a fast workstation.

ROMs were constructed and used according to the following procedure: (1) applying the POD to a collection of full-

order data samples; (2) computing a set of POD modes and retaining the dominant modes; (3) projecting the governing

fluid equations into the computed subspace and coupling these equations to the structural equations, and (4) time

integrating or directly solving the reduced order system. ROMs were obtained for two Mach numbers at which the

aerodynamics were reasonably linear: 0.9 and 1.2. At Mach 0.9, available solutions were static, and a 10-mode ROM

was constructed from a small set of data samples. Linearization of the ROM and application of a direct search

procedure yielded a pitchfork-bifurcation location close to that found through an extensive full-order analysis. The

computational cost of this calculation was on the order of minutes, at least two orders of magnitude faster than with the

full-order model.

At Mach 1.2, a 10-mode ROM was constructed from a set of full-order data samples computed over a short transient

period. This single ROM was then used in LCO simulation for different dynamic pressures and in the computation of

the supercritical Hopf bifurcation point at which LCO states became available. LCO states were computed with
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reasonable accuracy, in comparison to full-order results, over a range of dynamic pressures encompassing decaying and

sustained physical oscillations. Direct computation of the Hopf point was executed in a matter of minutes, again at least

two orders of magnitude faster than with the full-order model. It was noteworthy that bifurcation analysis of a reduced-

order aeroelastic system constructed away from the critical point accurately predicted bifurcation location and

frequency. Also, by increasing the stability-limited time step by an order of magnitude, fully developed LCOs were

computed with the ROM 4–5 times faster than with the full-order model. Accuracy of the LCO simulation was

maintained for these large time steps by time-synchronizing the fluid and structure through a subiterative procedure.

Further research is recommended to determine the sensitivity of the results reported herein to variations in the process

by which the ROMs at Mach 0.9 and Mach 1.2 were constructed.
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